Vertex-transitive graphs that have no Hamilton decomposition
نویسندگان
چکیده
It is shown that there are infinitely many connected vertex-transitive graphs that have no Hamilton decomposition, including infinitely many Cayley graphs of valency 6, and including Cayley graphs of arbitrarily large valency.
منابع مشابه
Hamilton cycles and paths in vertex-transitive graphs - Current directions
In this article current directions in solving Lovász’s problem about the existence of Hamilton cycles and paths in connected vertex-transitive graphs are given. © 2009 Elsevier B.V. All rights reserved. 1. Historical motivation In 1969, Lovász [59] asked whether every finite connected vertex-transitive graph has a Hamilton path, that is, a simple path going through all vertices, thus tying toge...
متن کاملar X iv : m at h / 06 06 58 5 v 1 [ m at h . C O ] 2 3 Ju n 20 06 HAMILTONICITY OF VERTEX - TRANSITIVE GRAPHS OF ORDER 4 p
It is shown that every connected vertex-transitive graph of order 4p, where p is a prime, is hamiltonian with the exception of the Coxeter graph which is known to possess a Hamilton path. In 1969, Lovász [22] asked if every finite, connected vertex-transitive graph has a Hamilton path, that is, a path going through all vertices of the graph. With the exception of K 2 , only four connected verte...
متن کاملVertex-Transitive Graphs Of Prime-Squared Order Are Hamilton-Decomposable
We prove that all connected vertex-transitive graphs of order p, p a prime, can be decomposed into Hamilton cycles.
متن کاملTwo-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملOn the Decomposition of Vertex-Transitive Graphs into Multicycles
In this paper, we prove that every vertex-transitive graph can be expressed as the edge-disjoint union of symmetric graphs. We define a multicycle graph and conjecture that every vertex-transitive graph cam be expressed as the edge-disjoint union of multicycles. We verify this conjecture for several subclasses of vertextransitive graphs, including Cayley graphs, multidimensional circulants, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 114 شماره
صفحات -
تاریخ انتشار 2015